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I.  Phys.: Condens. Matter 6 (1994) 10519-10531. Primed in the UK 

Dipole-trap model and non-dispersive charge-carrier 
transport in polymers of various structures 

S V Novikov and A V Vannikov 
A N Frumkin Institute of Electrochemistry. Russian Academy of Sciences, Leninsky hospect 
31, 117031, Moscow. Russia 

Received 8 April 1994 

Abstract. We present a development of the dipole-trap model for the description of the held 
and temperature dependences of the nondispersive charge-eun'er transport in disordered organic 
matrices. Very good agreement between our numerical results and the phenomenological Gill- 
Ester equalion is obtained. Our consideration reveals the physical meaning of the parameters 
of this equation. 

1. Introduction 

Polymers in which the charge-carrier drift mobility p can be measured by a straightforward 
timeof-flight method can be divided into the following groups: 

(i) molecularly doped polymer systems, such as aromatic amines in polyesters; 
(ii) carbon-chain polymers with chromophoric aromatic pendent groups, e.g. poly(N- 

vinylcarbazole) (PVK); 
(iii) polymers with transport sites in the backbone, such as poly(hydroxyaminoester)s 

[I]; and 
(iv) U- and n-conjugated polymers, e.g. polysilylenes [23] and poly(p-phenylene 

vinylene)s [4]. 

In groups (i)-(iii) the localized transport sites are associated with nitrogen atoms 
conjugated with phenyl groups. In polymers of group (iv) the transport sites are domains 
like a suborganization of the chain [Z] or so-called effectively conjugated segments [4]. The 
common feature of the non-dispersive charge-carrier transport in the systems listed above is 
the similar dependences of p on the electric field F and temperature T ,  which are described 
by the empirical equation proposed by Gill [5]: 

(1) 

and in slightly different form by Pfister [6]. Here we use a system of units withi kB = 1. 
The similarity of transport behaviour allowed the suggestion that the same common 

but incompletely elucidated mechanism of electronic transport by thermal emission from 
localized states, which has been established for molecularly doped polymers, also operates in 
R- and u-conjugated polymers [Z]. Equation ( I )  is often connected with the Poole-Frenkel 
(PF) effect [7,8], for two reasons. First, p depends on F as lnp c( F'j2, as predicted by 
the PF effect; secondly, the experimental values of coefficient ,9 approximately correspond 
to the values calculated from the equation for the PF factor: 

p = poexp[-(Eo - gF1/')(T-' - T-' 0 11 

gPPF = 2(e3/&)~/z.  (2) 
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Here E is the dielectric constant. Unfortunately, the PF effect can only formally explain the 
observed field dependence because of the absence of sufficient concentrations of charged 
traps in the polymer matrices studied. 

There are several models of charge transport in disordcred organic matrices that do not 
require the presence of charged traps, as does the PF model, namely small-polaron hopping 
[9], hopping in a Gaussian density of states (DOS) [1&12] and the Marcus [I31 theory of 
electron transfer, among others. Unfortunately, the Marcus theory and the model of small- 
polaron hopping cannot explain the field dependence of p of the type I n p  a F1”. The 
model of hopping in a Gaussian DOS does not include any direct molecular parameters of 
polymer systems. In recent years the Gaussian model has been developed in detail [14-17], 
and numerous attempts at comparison with experimental results have been made [lo, 18-21]. 
We emphasize the remaining problems and difficulties of the Gaussian model. 

(i) A serious problem is the very narrow domain of field F where the dependence 
In p a F’” is obeyed 1221. 

(ii) Non-dispersive transport is experimentally observed under conditions where the 
Gaussian model predicts a dispersive one, i.e. where u/T > 4.4, where U is the width of 
the Gaussian distribution [22]. 

(iii) It is rather difficult to understand the independence of U on temperature, especially 
in situations where U is comparable to T (e.g. U N (6-7) x eV and T N_ 300 K [ZO]). 

(iv). In situations where o / T  >> 1 (e.g. u /T  = 4 4 ,  the deep tail of the distribution 
gives the main contribution to non-dispersive (equilibrium) charge transport. The functional 
form of the distribution in this asymptotic domain may not be Gaussian at all. An 
approximate Gaussian form for the DOS in the vicinity of its maximum may be guaranteed by 
the central-limit theorem, but the tail of the density is commonly formed by rare. fluctuations 
of the environment, so the centd-limit theorem cannot be applied here. In a recent paper by 
Dieckmann er nl [23] the exact DOS was computed for the cubic lattice with sites occupied by 
dipoles with random orientation. It was found that, at least for a small dipole concentration, 
the resulting DOS has totally non-Gaussian form. We intend to consider this crucial problem 
carefully in a separate paper [24]. 

(v) To the best of our knowledge, in all cases where experimental data have been 
compared with theory, the following formula for the mobility has been used: 

p = p~oexp{-(2~/3T)’+ C[(u/T)’ - Z.Z]F1/2] (3) 
where C is a parameter that characterizes the degree of positional disorder and C 
is an empirical ‘constant’ (though dependent on average intersite distance r )  given as 
2.9 x lo4 om1/’ V-’P. Surprisingly, in a recent paper [E] Bassler points out that, instead 
of F ,  one must use a dimensionless field Fea = eFrj2.T in equation (3). Consequently, the 
‘constant’ C becomes dependent not only on r ,  but on the temperature too! Bassler argues 
that possible corrections are expected to be small. Nevertheless, it would be much better to 
compare experimental results with the true expression for the mobility, especially because 
one of the strong arguments in favour of the Gaussian model is close agreement between 
experimental and theoretical values of C [ Il119,26,27]. 

For these reasons we suggest the simplest transport model in which the main parameter 
is the dipole moment of the trap (or the transport site) [28,29]. 

2. Dipole-trap model: formulation 

Suppose that the mobility value is limited by the escape rate of charge carriers from the 
dipole trap (transport centre) with depth EO. For a rough estimation of the effect we suppose 
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that the main contribution to the escape probability is given by the trajectories that pass 
through the close vicinity of the saddle point of the potential energy where the activation 
energy is minimal. Thus we assume that the electric field affects the escape rate mostly 
by decreasing the activation energy. The saddle-point coordinates depend on the mutual 
orientation of the field F and the trap dipole moment d. Hence, we produce an averaging 
over the dipole orientations. In this averaging we consider the influence of the field on the 
dipole's orientation. The final expression for the mobility has the form [28]: 

Eo + GEo(a, F )  - d F  cos a 
~r. = I r . o i lda  sinaexp T (4) 

where 

SEo(ol, F )  = -e(dFZ/~)"3{3[1/p~ - (co~a)/p,]}'/~ 

and 

-p,(a) = [~[(8+cosza) ' /2  - c o s ~ r ] } " ~ .  

Here a is the angle between vectors d and F and GEo(a, F )  is the change of trap depth 
from the case F = 0. The distance between the saddle point and dipole is equal to 

r, = (d/EF)"3ps(a) (5 )  

and for a typical experimental range of electric field 104-106 V cm-', r, = 10-40 .k. 
Because of this small value of r, we believe that, first, we should use E 2: 1-2 in our 
formula and, secondly, there is no actual direct relation between the slope of the mobility- 
field dependence and the macroscopic static dielectric constant of the polymer matrix, which 
is commonly used in equation (2).  

We can make a rough estimation of the slope coefficient of the mobility-field dependence 
directly from equation (4): 

which for room temperature gives values of about 10-3-10-2 cm1I2 in good 
agreement with experimental data. This estimation depends only very weakly on the matrix 
and dopant parameters, so we can explain the universality of the coefficient B .  

Using this model we can explain the ubiquitous appearance of the field dependence (1) 
(without the 1/To term) without needing the assumption of the presence of charged traps 
in high concentration in polymer matrices. This dependence is intermediate between the 
low-field region ( F  << Ft) and the high-field region ( F  >> F J ,  where the orientation of the 
dipoles by the electric field F occurs, and Fc Y 0.01e3/~d2. Numerical calculations give 
the following simple expression for the coefficient p :  

We have tried to describe real experimental data 191 using our formula. These data 
were chosen because of the extremely broad interval of fields investigated. We obtained 
very good agreement between the experimental and thoeretical field dependences, but the 
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optimal values of our fitting parameters, the dipole moment d and the dielectric constant 
E ,  were too high d N 18 D and E Y 7.5. We think the reason is that high values of E 

and especially of d are needed to move tEe transition region to the low-field values. In 
this low-field region our basic assumption about carrier escape in the close vicinity of the 
saddle point only is not strictly valid owing to the poor separation of the saddle point. In 
this situation we must consider the charge-carrier dynamics in a trap. 

We consider the carrier dynamics using a stochastic approach, assuming that the carrier 
energy E is the only significant constant of motion. The dynamics of the probability density 
P(E, t )  is govemed by a Markovian master equation 

S V Novibv and A V Vannibv 

dE‘[K(E, E’)P(E’, t )  - K(E‘, E)P(E, t ) ]  - kd(E)P(E, t ) .  (8) 
ap m 

at = LS 
Here the kernel K ( E ,  E’) is the transition probability for a change in energy from E‘ to 
E per unit time, ka(E)  is the decay constant of,a bound state of the carrier in a trap, and 
E,. is the energy of the bottom of a potential well. For classical dynamics kd(E) = 0 
for E c E,,, where E,, is the decay threshold. The kernel K(E, E‘) was chosen in the 
form of the so-called BCK kernel [30]. The physical meaning of the BGK kernel is rather 
simple: every collision conserves the particle’s coordinates and randomizes its momentum 
according to a Maxwell-Boltzmann distribution. A detailed motivation for this choice may 
be found elsewhere [29]. 

Calculation of the escape constant k, may be carried out in two ways. The first is by 
direct Monte Carlo simulation of the sequence of the carrier’s random jumps in energy, 
keeping in mind that escape occurs as soon as the carrier reaches an energy above the 
threshold E-. Thus, we may express k, in terms of the average time ta for the carrier to 
climb from the bottom of the potential well E,.. to the threshold energy E,& 

!+ = t-l a .  (9) 

(In our model the threshold energy E,, is equal to SE&, F )  from equation (4f.) Details 
of such a calculation were presented in our previous paper [29]. The major disadvantage of 
this method is its inability to provide the escape rate constant at low temperatures because 
of an exponential increase in the simulation time. 

The second method of calculation of k. is a straightforward solution of the kinetic 
equation (8) and calculation of the steady-state probability density P,(E, t ) :  

P,(E, t )  = P,(E)exp(-k,t). (10) 

The function P,(E) is the eigenfunction of the integral operator 

which corresponds to the largest eigenvalue A. 
possibility to compute P,(E) by iteration 

A non-degeneracy of A gives us the 
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which converges rapidly to PdE) for almost any initial frinction Po(E). 'Then we calculate 
ke using the equation 

k. = uo - b = ( Ldn dE P , ( E ) ) '  df dE'K(E, E')P,(E') ( 1 3  

which is a consequence of the normalization df the BGK kernel 

E... 

E- Em," 

m Lmn dE K(E, E') = VO. (14) 

The use of equation (13) instead of the direct calculation of A from equation, (11) permits 
us to avoid the direct subtraction of the exponentially close quantities vo and A. The 
computation time tc of the numerical realization of this method is mostly determined by the 
calculation of the kernel K ( E ,  E'), 

$ ( E ,  E') = ~ ' / d r d r ' S ( E  - H@))S(E' - H(r'))K(T, .r ' )  (15) 
Q (E') 

via numerical integration. Here n ( E )  is the density of states, 

Q(E) = d r S ( E  - H ( r ) )  s 
and H ( r )  is the Hamiltonian of the system. The BGK kernel in the phase space r = (r.  @) 
has the form 

K(r, r') = U ~ S ( ~  - +)pq(p) 

where vo is the mean frequency of the carrier 'collisions' with the environment, and P&) 
is the equilibrium distribution function of the momentum p .  The function K(E, ,E')  is 
computed for the discrete set of its arguments E and E', and one can expect that the 
required grid size AE = Ei - Ei-1 is dictated by the relation AE N T (and this. w" 
confirmed afterwards). Consequently, we may estimate fc for this method as 

tc N T-' (18) 

zc N exp[(E,, - E,,,,")/T]. 

while for the Monte Carlo method 

~(19)  

Comparison of (18) with (19) shows that this second method has a substantial advantage 
over the Monte Carlo method for the computation of & for deep traps or low temperatures. 

The above calculations give us &e charge-carrier escape rate at a fixed angle ff between 
vectors B and d. To obtain the mobility p we must carry out an averaging over the dipole 
orientations 

where W ( a )  is @e angular distribution function for dipoles. We used two different functions: 
the first for a fully random dipole orientation, i.e. 

~ ( a )  = t sina (21) 

W(a) = ( d F / Z T )  sinh-'(dF/T) sinorexp[(dF/T)cosa]. 

and the second for a free dipole in the electric field, i.e, 

(22) 
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3. Dipole-trap model: computer simulation results 

3.1. Mobilityfeld and temperature dependences 

It was shown in our previous paper [29] that the field dependences of the mobility have 
a typical PF form. The slopes of the linear region on these curves are in good agreement 
with experimental values. Moreover, the existence of a linear region is a consequence of 
the carrier dynamics and not the orientation effect, as was the case for the previous rough 
approximation. Indeed, a linear region is already observed for the field dependence of the 
escape rate constant at different fixed angles between vectors F and d,  as seen in figure 1. 

-4 t $ 1  C J 

4 -U 1 

6 

.- 
0 500 1000 1500 2000 2500 

F”* (V/cm)”* 

Figure 1. Field dependence of the rate constant !+ al various angles a,  which vary from 0 to x 
w i h  step ~ 1 5  for curves 1-6. Calculations were canied out ford = 6 D, E = 2, Eo = 0.8 eV 
and TIE0 = 0.05. 

We measure the escape rate constant (and, correspondingly, mobility) by the inverse 
average number of ‘collisions’ with the environment needed to free a charge carrier from 
the trap. Hence, in our model, the value of k, cannot be greater than 1, and the equality 
k, = 1 (or p = 1) is, in fact, equivalent to instantaneous carrier escape from the trap. To 
obtain the true escape constant, k, should be multiplied by uo. 

We propose a possible explanation for the deviation of the field dependence of the escape 
rate constant from the law Ink, a F2/’, which follows from the estimation of k, from the 
activation energy decrease. An electric field F affects the charge carrier’s motion in the 
trap in two ways: first, through the chznge of activation energy, and, secondly, through 
the influence on carrier dynamics. In a sufficiently low field, the main influence on the 
carrier dynamics is provided by the change of the long-range behaviour of the charge-dipole 
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potential energy, which manifests itself through the restriction of the long-range tail of the 
potential energy. For a long-range potential energy, a particle with an energy just below the 
threshold spends most of the time far away from the trap, where its velocity is very small, so 
the kinetic energy E k  is small too. Hence the distribution function P ( E ,  I&) for the panicle 
to have a kinetic energy & while having total energy E has a sharp maximum at Ek + 0 
provided E + E-. The electric field restricts this long-range tail and shifts the maximum 
in the distribution to greater Eli. The mechanism of the interaction of a charge carrier with 
the thermal fluctuations that we used includes a resetting of Ek at every ‘collision’ with 
the environment, so this shift of the maximum results in an increase of energy dissipation 
rate just below the threshold and a corresponding decrease of the escape rate constant. This 
effect most clearly manifests itself in the case CY = 0 (figure I ) ,  where the activation energy 
does not depend on F (SEo(0, F )  = 0), and the aforementioned first factor does not exist. 
In this case the second factor’s influence leads to the decrease of p with increase of F. For 
not so small values of angle a, a change of activation energy dominates over this effect, 
but, nevertheless, it still weakens the escape ratefield dependence. 

Numerical results obtained at very low temperature show a much closer correlation of 
the mobility-field dependence, obtained for the random dipole distribution (21), with the 
relation In p m F2f3 (figure 2). So part of the deviation of the mobility-field dependence at 
high temperature from the ‘genuine’ dipole behaviour may be associated with the peculiar 
kind of ‘repulsion’ of the mobility-field curve from the limiting value pma = 1. More 
strictly, in the vicinity of pmm the rate of the mobility increase with field (or temperature) 
is slowing down, which leads to the change of the mobility-field (or mobility-temperature) 
dependences. For the mobility-field dependences it leads to a change from the Inp  o( F’fi 
dependence to one more like Inp a F’I’. 

Our previous results were based on the Monte Carlo simulation only. We have found 
that the overall mobility-field and mobility-temperature dependences for moderately strong 
fields are described sufficiently well by the formula 

A totally non-Arrhenius temperature dependence is very unusual for the escape rate constant. 
The only way of verifying it is to perform calculations of k, over a wider temperature range 
(i.e., in our case, for lower temperatures). Now we are able to carry out such a calculation 
using computation of the steady-state probability density. Results of this calculation are 
shown on figure 3. We can state that the mobility-temperature dependence has a complicated 
form, being an Arrhenius one at low temperatures and significantly deviating from this 
with increase of temperature. A strong argument in favour of the Arrhenius type of 
temperature dependence at low temperature is the close agreement between the curve’s 
slope and corresponding trap depth. At high temperature this dependence closely resembles 
a Inp  o( l /TZ dependence. This weakening of the mobility-temperature dependence is 
another manifestation of the slowing down of the mobility increase in the vicinity of the 
limiting value p rr I. Experimental dat+on the mobility-temperature dependence may be 
approximated either by a h  p cc I /  T dependence or by a In@ a l / T Z  dependence according 
to the temperature range investigated. A comprehensive analysis of the advantages of using 
a I n p  m 1/T  or l n p  m 1/T2 dependence for the description of the experimental data 
may be found in reviews [22,25]. For low temperatures, the overall field and temperature 
dependences of the mobility are in very good agreement with the Gill-Plister equation (1) 
(see figures 3 and 4). Our preliminary calculations show that intersection of the Arrhenius 
curves plotted for the different field values is probably a common phenomenon: it is 
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-100' 
0 1 2 3 

F ' I3 (MV/cm) ' I3 

Figure 2. Plot of In w versus F2I3 at very low temperature. Curve 1 was obtained for the random 
dipole distribution (21) and curve 2 for the distribution (22). Parameter values: Eo = 0.8 eV, 
TIE0 = 0.01, d = 6 D and E = 2. 

observed for such different types of ,potential energy as Coulomb and Gaussian, too. A 
detailed discussion of this phenomenon will be published in a separate paper. Nevertheless, 
we may reasonably assume that the insensitivity of the phenomenon to the form of the 
potential energy implies that the only essential parameter that determines the value of TO is 
the trap depth EO: TO o[ Eo. One can see on figure 3 that 

To z 0.1EO. (24) 

Moreover, the coefficient of proportionality in equation (24) is also approximately insensitive 
to the form of the potential energy. Such robustness of the intersection phenomenon raises 
important questions about its nature, in particular about its relation to the mechanism 
of thermal activation of a carrier (BGK mechanism). Relation (24). albeit very crude, is 
approximately verified by a vast collection of experimental data [31-351. 

In most papers the phenomenological temperature Ti from the Gill-Pfister equation (1) 
is directly interpreted as the temperature of the real inversion of the sign of the mobility- 
field dependence slope. The dipoletrap model, with BGK mechanism of thermal activation, 
cannot describe such behaviour. It is of interest to note that while equation (1) describes a 
great variety of experimental data, direct observation of real inversion is an extremely rare 
phenomenon. Usually the temperature TO is far greater than the glass transition temperature 
of the polymer mairix. These observations and the results of our simulation suggest that, 
for most systems, the temperature TO is, probably, not a temperature of real inversion at all. 
It is possible that a real inversion of the sign of the slope of the mobility-field dependence 
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0 20 4.3 e4 BO 100 0 20 40 ec 80 300 

EO/T Eo/T 

Figure 3. (a) Temperature dependence ofthe mobility at various electric fields, which have the 
following values for curves 1-8, respectively: 0, 2, 5, 10, 15, 22.5, 30 and 40 x I@ V cm-'. 
All other parameters have the same values as in figure 2, and the averaging (22) is used. (b) 
Here we draw straight lines b fit points obiaieed only for temperatures less than 0.05Eo. 

is not a general feature of the charge-carrier transport in disordered organic matrices, but 
rather a special case resulting from the action of some particular mechanism. 

Also we wish to emphasize the particular mobility value 110 (to be precise, ke), which 
corresponds to the intersection point. In our model 

1102: 1 (25) 

and approximately agrees with the maximal possible mobility pmax (i.e. mobility at T -+ 00, 

which is independent of F) .  Hence, in our model the real carrier mobility at T -+ 00 is 
Ice, and not poexp[(Eo - p F ' / 2 ) / T ~ ] ,  as follows formally from equation (1) (see also 
figure 3). Some years ago Borsenberger [36] noted that extrapolation to T = bo at F = 0 
according to an Arrhenius temperature dependence gives an unreasonably high mobility, 
while extrapolation according to a l n p  a 1/T2 dependence gives a reasonable one (in 
his particular case, lo4 cm2 V-' s-' and 0.19 cmz V-' s-', respectively). Borsenberger 
emphasized that this distinction is a strong argument in favour of the latter dependence. In 
our model, extrapolation to T = bo does not give the real mobility at high temperature, but 
a value enhanced by the factor 

exp(Eo/To) N el0 N 2 x io4. (26) 

So the real high-temperature mobility according to Borsenberger's data should not be 
104 cmz V-' s-l , b ut about 0.5 cmz V-' s-', a very reasonable value. The enhancement 
factor (26) may vary widely because the relation (24) is very approximate, but, nevertheless, 
we can state with assurance that a simple Arrhenius extrapolation overestimates the mobility 
value at high temperatures by several orders of magnitude. 

Unfortunately, limitation of our computer does not permit us to perform a strict 
optimization procedure on the fitting of our curves to the Schein et a1 191 data and to 
provide a direct comparison with our previous results [28]. Nevertheless, the dynamic 
effects move the linear region on the Inp(F'lz) curves to lower fields, and reduce the 
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I ’  E o f g  

0 1 2 3 4 6 

F ’ I2 (MVlcm) ’“ 
Figure 4. Field dependence of the mobilify at various temperatures. The ratio TjEo  takes the 
following values for curves 1-8. respectively: 0.010. 0.011, 0.012, 0.013, 0.014, 0.016, 0.018 
and 0.020. All other parameters have the same values as in figure 2, and lhe averaging (22) is 
used. 

slope, so we may anticipate that unusually high d and E values are not necessary to describe 
the experimental data. To support this statement we demonstrate in figure 5 the result of a 
‘poor man’s’ optimization (optimization by eye) for the fitting of these data. A theoretical 
curve with d = 6 D and E = 2.5 fits the data very well at F 4 x le V cm-’, but a 
significant deviation in the low-field region is observed. For comparison we provide the 
mobility-field dependence calculated with the use of equation (4). Note that the slope of 
the latter dependence is significantly greater. In fact, according to’equation (7), using the 
orientation effect only, it is impossible to obtain the experimentally observed slope for the 
mobility-field dependence using reasonable values of E. 

3.2. Zerolfeld limit 

According to our calculations, the mobility-field dependence In ~ ( F ’ f l )  has a distinct 
curvature in the low-field region, so the real mobility value at zero field differs noticeably 
from the corresponding value obtained by extrapolation of the curve’s linear region to zero 
field. In recent papers [38,39] the extrapolated mobility value p: was compared with the 
hole diffusion coefficient Dh via the Einstein equation 
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0 400 800 1200 1600 

F " ~  (V/cm)"* 
Figure 5. Result of the approximate optimization of the mobility-field dependence for fitting 
data of Schein er al [9]: dopr = 6 D and ~~~t = 2.5. The escape constant was obtained 
using computation of the steady-slate probability density (10, and the averaging (22) was used 
(curve 1 ) .  For the parameter Eo we used the experimental value of 0.6 eV 1371. For amparison, 
we provide thc mobility-field dependence calculated with the use of equation (4) (curve 2) for 
the same values of d and E.  

for the model polymer poly(tetrapheny1benzidine) (RPB). The diffusion coefficient was 
measured by a standard electrochemical technical both for the polymer layer saturated with 
liquid electrolyte ('plastified' polymer layer) and for the semi-oxidized PTPB containing 
the equivalent quantity of counter-ions but without the liquid electrolyte ('solid' polymer 
layer). It was found that, for the 'solid' layer, equation (27) is obeyed well, while, not 
surprisingly, for the 'plastified' layer, significant discrepancies were found. The authors 
argue that agreement between values of pi and Di, for the case of the 'solid' layer is a 
convincing argument for the continuation of the m-type rlaton l n p  F'fl down to the 
close vicinity of zero field. This result is in clear disagreement with our model. We think 
that it is rather risky to reach such a profound conclusion from the aforementioned data as 
the 'solid' layer differs significantly from samples used in the time-of-flight measurements. 
Strictly speaking, our model in its present state cannot describe charge transport in very weak 
fields (about 104 V cm-I and less), because the distance between the saddle point and the 
transport site becomes equal to or exceeds the average distance between the transport sites. 
In this situation charge transport must be described using multicentre models. Nevertheless, 
from OUT point of view, PF-type behaviour in weak fields is very improbable. 
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4. Conclusions 

In recent years much effort has been directed towards describing the main features of the 
charge transport in polymeric disordered solids. Nevertheless, so far no model has been 
found that could fully explain the electric field and temperature dependences of the charge- 
carrier drift mobility in these systems. A possible reason is that various mechanisms of 
electronic transport apply in different systems and also in different regimes of temperature 
and electric field, so no single mechanism can be expected to explain the whole variety of 
the experimental data. Meanwhile there is the well known phenomenological equation (1) 
suggested by Gill 151 and Pfister 161, which describes well the experimental dependences and 
correctly predicts the behaviour of these systems at characteristic temperature TO and field 
Fo. In the present paper the experimentally observed field and temperature dependences of 
the drift mobility are well explained using the dipoletrap model, which takes into account 
the charge-carrier dynamics in a trap. The Gill-Pfister equation is a natural result of the 
dipole-trap model. The main molecular parameter used in the model is the dipole moment 
of a trap. 

At the present state of our knowledge we may explain the ubiquitous appearance of the 
PF field dependence. by using the following arguments. First of all, the ultimate reason for 
the observation of the PF field dependence is the proximity of the field dependence of the 
dipole-related change of activation energy 8Eo o( F2I3 to the PF dependence. Furthermore, 
there are some factors that cause additional weakening of the mobility-field dependence. 
and bring it closer to the PF dependence. These factors are: 

(i) the dynamic effect of the restriction of the long-range tail of the potential energy by 
the external electric field; 

(ii) orientation of the dipoles by the external electric field; and 
(iii) slowing down of the mobility increase in the vicinity of the limiting value p ~ ,  which 

weakens the mobility-field (and mobility-temperature) dependences for relatively shallow 
traps (e.g. EO rx 0.4 eV at room temperature). 

S V Novikov and A V Vannikov 

The other important statements of the dipole-trap model are as follows: 

(i) There is no direct relation between macroscopic static dielectric constant E and the 
mobility-field dependence. 

(ii) The mobility-temperature dependence has a complicated form, being close to 
Arrhenius at low temperature and resembling the dependence I n p  c( l / T Z  at high 
temperatures. 

(iii) The characteristic temperature To from the Gill-Pfister equation (1) has a simple 
approximate relation to the activation energy Eo: 

(iv) The temperature To for most systems is not a temperature of real inversion of the 
sign of the slope of the mobility-field dependence. 

(v) A formal extrapolation of the Arrhenius temperature dependence to T + 00 

overestimates the high-temperature mobility by several orders of magnitude. In terms 
of the Gill-Pfister equation (l), the real zero-field mobility at high temperature is not 

Obviously, our model in its current form cannot explain some experimentally observed 
phenomena, such as the change of sign of f3 at high temperatures, and cannot even pretend 
to describe dispersive transport (concentration dependences we consider in separate papers 
[40,41]). Nevertheless, we hope that this treatment clearly demonstrates the potential 
usefulness of the model. 

0.1Eo. 

~ ~ o e x p ( & / ~ o ) ,  but PO. 
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